1,122 research outputs found

    B -> X_s gamma in supersymmetry: large contributions beyond the leading order

    Full text link
    We discuss possible large contributions to B -> X_s gamma, which can occur at the next-to-leading order in supersymmetric models. They can originate from terms enhanced by tan(beta) factors, when the ratio between the two Higgs vacuum expectation values is large, or by logarithm of M_{susy}/M_W, when the supersymmetric particles are considerably heavier than the W boson. We give compact formulae which include all potentially large higher-order contributions. We find that tan(beta) terms at the next-to-leading order do not only appear from the Hall-Rattazzi-Sarid effect (the modified relation between the bottom mass and Yukawa coupling), but also from an analogous effect in the top-quark Yukawa coupling. Finally, we show how next-to-leading order corrections, in the large tan(beta) region, can significantly reduce the limit on the charged-Higgs mass, even if supersymmetric particles are very heavy.Comment: 18 pages, 5 figs, extended discussion of light stop case, notational improvement

    QCD Corrections to Radiative B Decays in the MSSM with Minimal Flavor Violation

    Get PDF
    We compute the complete supersymmetric QCD corrections to the Wilson coefficients of the magnetic and chromomagnetic operators, relevant in the calculation of b -> s gamma decays, in the MSSM with Minimal Flavor Violation. We investigate the numerical impact of the new results for different choices of the MSSM parameters and of the scale where the quark and squark mass matrices are assumed to be aligned. We find that the corrections can be important when the superpartners are relatively light, and that they depend sizeably on the scale of alignment. Finally, we discuss how our calculation can be employed when the scale of alignment is far from the weak scale.Comment: 16 pages, 5 figures; v2: version to appear in Phys. Lett.

    UV asymptotically free QED as a broken YM theory in the unitary gauge

    Get PDF
    We compute the β\beta-function of a YM theory, broken to U(1)U(1), by evaluating the coupling constant renormalization in the broken phase. We perform the calculation in the unitary gauge where only physical particles appear and the theory looks like a version of QED containing massive charged spin 1 particles. We consider an on-shell scattering process and after verifying that the non-renormalizable divergences which appear in the Green's functions cancel in the expression of the amplitude, we show that the coupling constant renormalization is entirely due to the photon self-energy as in QED. However we get the expected asymptotic freedom and the physical charge decreases logarithmically as a function of the symmetry breaking scale.Comment: 8 page

    The Indirect Limit on the Standard Model Higgs Boson Mass from the Precision FERMILAB, LEP and SLD Data

    Get PDF
    Standard Model fits are performed on the most recent leptonic and b quark Z decay data from LEP and SLD, and FERMILAB data on top quark production, to obtain mtm_t and mHm_H. Poor fits are obtained, with confidence levels \simeq 2%. Removing the b quark data improves markedly the quality of the fits and reduces the 95% CL upper limit on mHm_H by \simeq 50 GeV.Comment: 6 pages 3 tables i figur

    The electroweak form factor \hat{\kappa}(q^2) and the running of \sin^2 \hat{\theta}_W

    Full text link
    Gauge independent form factors \rho^(e; e) and \hat{\kappa}^(e; e)(q^2) for Moller scattering at s << m_W^2 are derived. It is pointed out that \hat{\kappa}^(e; e) is very different from its counterparts in other processes. The relation between the effective parameter \hat{\kappa}^(e; e)(q^2,\mu) \sin^2 \hat{\theta}_W(\mu) and \sin^2 \theta_eff is derived in a scale-independent manner. A gauge and process-independent running parameter \sin^2 \hat{\theta}_W (q^2), based on the pinch-technique self-energy a_{\gamma Z} (q^2), is discussed for all q^2 values. At q^2=0 it absorbs very accurately the Czarnecki-Marciano calculation of the Moller scattering asymmetry at low s values, and at q^2 = m^2_Z it is rather close to \sin^2 \theta_eff. The q^2 dependence of \sin^2 \hat{\theta}_W (q^2) is displayed in the space and time-like domains.Comment: A new paragraph has been inserted at the beginning of the discussion in Section

    Two-loop electroweak top corrections: are they under control?

    Get PDF
    The assumption that two-loop top corrections are well approximated by the O(Gmu2mt4)O(G_mu^2 mt^4) contribution is investigated. It is shown that in the case of the ratio neutral-to-charged current amplitudes at zero momentum transfer the O(Gmu2mt2MZ2)O(G_mu^2 mt^2 M_Z^2) terms are numerically comparable to the mt4m_t^4 contribution for realistic values of the top mass. An estimate of the theoretical error due to unknown two-loop top effect is presented for a few observables of LEP interest.Comment: 13 pages, LaTeX using equations, doublespace, cite macros. Hard copies of the paper including one figure are available from [email protected]

    Constraints on the Higgs Boson Mass from Direct Searches and Precision Measurements

    Get PDF
    We combine, within the framework of the Standard Model, the results of Higgs search experiments with the information coming from accurate theoretical calculation and precision measurements to provide a probability density function for the Higgs mass, from which all numbers of interest can be derived. The expected value is 170 GeV, with an expectation uncertainty, quantified by the standard deviation of the distribution, of about 80 GeV. The median of the distribution is 150 GeV, while 75 % of the probability is concentrated in the region MH200M_H \leq 200 GeV. The 95 % probability upper limit comes out to be around 300 GeV.Comment: 32 pages, 5 figure

    Production of Long-Lived Sleptons at LHC

    Full text link
    We analyse the MSSM parameter space and discuss the narrow band near the so-called co-annihilation region where sleptons may be long-lived particles. This region is consistent with the WMAP restrictions on the Dark matter and depends on the value of tanβ\tan\beta. In this region staus are long-lived and may go through the detector. Due to a relatively small mass (150 ÷\div 850 GeV) their production cross-section at LHC may reach a few % pb.Comment: LaTex, 8 pages, 6 eps figure
    corecore